14 Дек

2.3. Химические основы производства водорода

Водород – один из основных химических продуктов нефтепереработки и нефтехимии. Главными его потребителями являются производство аммиака, метанола, процессы гидроочистки нефтяных фракций от сернистых соединений, гидрокрекинга, гидрирования бензола, гидродеалкилирования.Водород используют также в качестве топлива для ракет и в некоторых других процессах. Мировое производство водорода в 1990 г. составило ~ 43 млн т. Значение водорода в различных областях хозяйственной деятельности в настоящее время настолько велико, что прогресс в некоторых отраслях промышленности определяется в основном экономичностью его производства.

В основе промышленных методов получения водорода лежат реакции окисления углеводородов связанным или свободным кислородом. В промышленности используют следующие методы получения водорода: паровую каталитическую конверсию легких углеводородов с подводом тепла, автотермическую каталитическую конверсию легких углеводородов, высокотемпературную кислородную конверсию различных типов углеводородного сырья различных типов, кислородную или паро-кислородную газификацию твердого топлива, электролиз воды, извлечение водорода из газовых отходов процессов нефтепереработки.

2.3.1. Каталитическая конверсия углеводородов

с водяным паром

Каталитическая конверсия углеводородов в настоящее время является основным промышленным способом получения водорода.

Кроме природных и попутных нефтяных газов в качестве исходного сырья для его производства используют также коксовый газ и газы переработки нефти.

При повышенных температурах углеводороды реагируют с водяным паром, диоксидом углерода, кислородом в соответствии с уравнениями:

СnНm + Н2О             Н2 + СО + СО2 + СН4 + С

CnНm + О2 Н2 + CО + CО2 + CH4 + H2О + C

СnНm + СО2 Н2 + СО + CH4 + Н2О + С

СпНm + Н2 СН4 + С.

Как правило, конверсия углеводородов протекает в области, в которой образование углерода термодинамически неблагоприятно. При температурах ниже 700 К и повышенных давлениях основными продуктами реакции являются СН4 и СО2. При высоких температурах  (выше 1500 К) реакции протекают практически до образования Н2 и СО:

СnHm + nH2O            nCO + (n +m/2)H2     .

Каталитическую конверсию природного газа или сжиженных газов и бензиновых фракций с температурой кипения до 473 К водяным паром

СН4 + Н2О             СО + 3Н2 DН = – 206 кДж/моль

осуществляют под давлением до 4,0 МПа при температуре газа на выходе 1033-1173 К в зависимости от требуемого состава газовой смеси. Смесь углеводородов и паров воды подается в реакционные трубы, находящиеся в топке печи и поглощающие от нее тепло. Процесс проводят на катализаторах Ni/Аl2О3.

Для получения газа требуемого состава, например для синтеза метанола, в сырье вводят диоксид углерода и осуществляют процесс паро-углекислотной конверсии. В этом случае протекает также реакция

СnНm + nСО2 2nСО + m/nН2.

Проведение процесса конверсии метана смесью водяного пара и диоксида углерода позволяет широко варьировать отношение Н2:СО в синтез-газе.

Как и в случае реакций паровой конверсии углеводородов, реакция пароуглекислотной конверсии метана обратима; остальные углеводороды конвертируются полностью:

CH4 + CO2 2CO + 2 H2 DH = 247,3 кДж/моль

C2H6 + 2CO2 4CO + 3H2 DH = 429,7 кДж/моль

C7H16 + 7CO2 14CO + 8H2 DH = 1395 кДж/моль

C6H6 + 6CO2 12CO + 3H2 DH = 952 кДж/моль

Для проведения процесса в автотермическом режиме осуществляют паро-кислородную и паро-кислородно-воздушную конверсию углеводородов. при этом протекают также следующие реакции:

CnHm + O2 nCO +  H2

CnHm + (n + )O2 nCO2 +  H2O

Реакции эти практически необратимы, преобладание одной из них зависит от количества окислителя и параметров процесса. Реакции высоко экзотермичны и могут служить источником энергии для осуществления эндотермических реакций.

Реакции конверсии углеводородов относятся к гомолитическим, т.е. сопровождающимся разделением электронов в электронных парах молекул. Катализаторами конверсии углеводородов являются d-металлы, главным образом VIII Периодической системы химических элементов Д.И. Менделеева. Металлы по своей активности в реакции паровой конверсии метана располагаются в следующий ряд:

Fe < Co < Ni < Ru < Rh < Pt < Pd

Благородные металлы обладают высокой активностью, но дόроги, и все применяемые в промышленности в настоящее время катализаторы в качестве активного компонента содержат никель. Никелевые катализаторы паровой конверсии готовят обычно двумя способами: нанесением активного компонента на предварительно подготовленный носитель( его многократно пропитывают растворами солей никеля и промоторов) или соосаждением гидроксидов никеля, промоторов и порошкообразного носителя. Для предотвращения рекристаллизации кристаллов никеля на поверхности носителя в состав катализатора вводят промоторы, в качестве которых используют трудновосстановимые оксиды металлов. Эти оксиды проявляют структурирующее действие по отношению к никелю. Эффективность действия промоторов возрастает в ряду:

BaO << SrO << CaO < Cr2O3 < BeO < MgO < Al2O3.

В свежеприготовленном катализаторе никель находится в форме оксидов, алюминатов и других соединений. Перед началом работы катализатор восстанавливают водородом или оксидом углерода  в соответствии со схемой:

NiO + H2 Ni + H2O,

NiO + CO            Ni  + CO2.

В процессе паровой конверсии метана в большинстве случаев фактором, определяющим активность процесса, является подвод тепла через стенку реакционных труб к слою катализатора. Поэтому собственно активность катализатора, как правило, не является лимитирующим фактором.

2.3.2. Каталитическая конверсия оксида углерода

В газах каталитической конверсии углеводородов в зависимости от параметров процесса и сырья содержится 6-25% оксида углерода. В производствах, в которых СО не требуется, в частности в производстве водорода, проводится его конверсия в СО2 водяным паром. При этом получается дополнительное количество водорода, эквивалентное содержанию в газе СО. Различают среднетемпературную (623-723 К) и низкотемпературную (453-523 К) конверсию.

В первом случае остаточное содержание СО составляет несколько процентов, во втором – доли процента. После адсорбции СО2 оставшиеся в газе СО и СО2 удаляют гидрированием  на катализаторе при 523-723 К, при этом достигается глубокая очистка от кислородсодержащих соединений.

Во втором случае – для низкотемпературной конверсии – применяют в основном железохромовые катализаторы, активным элементом которых является Fе3О4. Добавка оксида хрома замедляет рост кристаллов. Железохромовый катализатор малочувствителен к отравлению сернистыми соединениями, но поглощенная им сера при взаимодействии с водородом образует сероводород, который может вызвать отравление катализатора.

Низкотемпературные катализаторы конверсии СО являются более активными и позволяют проводить конверсию при 453-523 К. Высокая активность обусловлена наличием в них металлической меди (20-50%). Содержащиеся также в катализаторе оксиды цинка и алюминия, а иногда и хрома, стабилизируют свойства активной меди, препятствуя ее спеканию.

Конвертированный газ после низкотемпературной конверсии СО и очистки от СО2 имеет остаточное содержание СО – 0,2-0,8% и СО2 – 0,01-0,5% в зависимости от способа очистки. Полная очистка от примесей СО и СО2 проводится гидрированием их на катализаторе до образования метана и воды:

СО + 3Н2 СН4 + Н2О ,

СО2 + 4Н2 СН4 + 2Н2О.

Недостатком этих катализаторов является образование летучих карбонилов никеля – высокотоксичных соединений.

Промышленный никельхромовый катализатор, применяемый для очистки от СО и СО2, имеет следующие характеристики:

Содержание никеля, % (мас.)……………………….60-70

Содержание окиси хрома, % (мас.)…………………30-35

Содержание графита, % (мас.) .…………………….до 5

Пористость, %………………………………………….60-65

Насыпная масса, кг/м3………………………………….1080

Удельная поверхность, м2/г ……………………………170

Поверхность никеля, м2/г ……………………………….25

В промышленных условиях одновременно проводится гидрирование и оксида, и диоксида углерода. Гидрирование СО не зависит от концентрации со2 в смеси. Напротив, присутствие СО в газе препятствует гидрированию СО2. Метанирование СО2 практически прекращается, если концентрация СО в газе превышает 0,0002-0,0003 м33. Таким образом, если на стадии гидрирование подается смесь оксидов, то сначала гидрируется СО и после практически полного завершения реакции начинает гидрироваться СО2.

Для получения чистого водорода газовая смесь должна быть очищена от диоксида углерода. Для этого применяют абсорбционные и реже адсорбционные способы очистки:

- водную очистку под давлением;

- поглощение СО2 водными и другими растворами этаноламинов;

- физическую адсорбцию органическими растворителями при комнатной и низкой температуре;

- очистку горячими растворами карбонатов;

- адсорбцию с десорбцией путем сброса давления.

Основной недостаток водной очистки – большой расход электроэнергии вследствие невысокой растворимости СО2 в воде. Кроме того, после водяной отмывки требуется доочистка газа другими способами, например раствором щелочи.

В настоящее время широкое распространение получили процессы, основанные на хемосорбции едким кали или моноэтаноламином. Их принципиальный недостаток в том, что расход тепла на 1 м3 очищаемого газа значительно увеличивается с повышением концентрации СО2 в исходном газе. Поэтому на некоторых установках для адсорбции СО2 применяют органические растворители. В качестве растворителей используют пропиленкарбонат («Флюор-процесс»), N-метилпирролидон («пуризол»), диметиловый эфир («селексол»), метанол («ректизол»).

Все эти способы с успехом могут применяться для очистки газов от СО2. Но в связи с технологическими особенностями установок паровой конверсии в трубчатых печах и из экономических соображений наиболее широкое распространение в последние 10-15 лет получили процессы очистки от СО2 растворами моноэтаноламина и едкого кали.

2.3.3. Общие сведения о технологии получения водорода

Наиболее распространенным и экономичным способом получения водорода является паровая каталитическая конверсия легких углеводородов (С17) в трубчатых печах. Для получения водорода чистотой 95-98% используют процессы конверсии углеводородов, конверсии СО, отмывки СО2, метанирования остаточных оксидов углерода. Водород с чистотой 99% синтезируют методом криогенной очистки. Для получения водорода более высокой степени чистоты (99,99%), газ после конверсии подают на адсорбционную или мембранную очистку, где из него удаляются практически все примеси. Установки всех трех типов широко используют в промышленности.

Мембранная технология получения водорода высокой степени чистоты во многом основана на фундаментальных работах российской школы В.М. Грязнова.

получение 95-98%-го водорода. В зависимости от дальнейшего использования водород получают под различным давлением: от 1,0 до 4,2 МПа. На рис. 2.7 представлена принципиальная схема типовой водородной установки. Сырье (природный газ или легкие нефтяные фракции) подогревается до 623-673 К в конвективной печи 2 или теплообменнике и поступает в аппараты десульфирования 1. Конвертированный газ из печи 2 охлаждается в печи-утилизаторе 3, где вырабатывается пар требуемых параметров.

После ступеней высокотемпературной и низкотемпературной конверсии СО газ поступает на адсорбцию СО2 и затем на метанирование остаточных оксидов. В результате получается водород 95-98,5%-й чистоты с содержанием в нем 1-5% метана  и следов СО и СО2.

Рис. 2.7. Принципиальная технологическая схема получения 95-98,5%-го водорода

1 – реактор десульфирования; 2 – трубчатая печь конверсии; 3 – котел-утилизатор; 4, 5 – среднетемпературный и низкотемпературный конверторы метана; 6 – абсорбер СО2; 7 – регенератор; 8 – метанатор.

Потоки: I – углеводородное сырье; II – технологический пар; III – вода; IV – пар высокого давления; V – СО2; VI – Н2;  VII – топливный газ; VIII – воздух

получение водорода высокой степени чистоты. В настоящее время широкое распространение получили установки для производства водорода высокой степени чистоты на базе паровой конверсии углеводородов и адсорбционного разделения конвертированного газа.

Сырье подогревается, очищают от серы и направляют в печь конверсии, откуда при температуре ~1123 К конвертированный газ поступает в котел-утилизатор, а затем дополнительно охлаждается в теплообменниках и поступает в конвертор СО.

В отличие от предыдущей схемы конверсия СО здесь одноступенчатая. Газовая смесь, содержащая Н2, СО2, СН4, Н2О и небольшое количество СО, охлаждается для удаления воды и направляется в адсорбционные аппараты, заполненные цеолитами. Все примеси адсорбируются в одну ступень при температуре окружающей среды. В результате получают водород со степенью чистоты 99,99%. Давление получаемого водорода составляет 1,5-2,0 МПа.

Термоконтактные методы получения водорода. Метод заключается в термическом разложении углеводородного сырья до углерода и водорода при температуре ~ 1573 К на инертной насадке или при 1173-1223 К на катализаторах. Промышленный процесс состоит из двух стадий: на первой стадии протекает распад углеводородов, на второй – сжигание выделившегося кокса. Процесс проводится в периодическом режиме. Широкого распространения он не получил.

Электролиз воды. Это единственный промышленный способ получения водорода, не основанный на использовании углеводородов. Электролиз воды выгодно отличается от других методов получения водорода простотой и надежностью технологической схемы, но он обладает большой энергоемкостью: в современных методах электролиза воды под давлением расходуется 55-65 тыс. кВт-ч электроэнергии на 1 т водорода. Электролиз воды для крупномасштабных производств может быть конкурентоспособным только при наличии дешевой электроэнергии.

выделение водорода как побочного продукта других реакций. Во многих процессах нефтепереработки и нефтехимии образуются отходящие газы со значительным содержанием водорода.

В процессе каталитического риформинга образуется водород в количестве 0,7-2,3% (мас.) в расчете на превращенное сырье. При производстве ацетилена на 1 т его получается 11 000-14 000 м3 газа, состоящего в основном из оксида углерода и водорода. При производстве этилена получают метан-водородную фракцию с содержанием водорода 90-95%.

Comments are closed.